--- title: "Distribution Building and Comparison" description: Learn to use mixIndependR to build and compare observed and expected distributions of number of heterozygous loci (K) and number of shared alleles (X). output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Distribution Building and Comparison} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- This vignette will introduce you to how the package `mixIndependR` will build and compare the observed and expected distributions for number of heterozygous loci (K) and number of shared alleles (X). ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r load, include = FALSE} library(mixIndependR) library(ggplot2) ``` With required parameters obtained from "basic genetics" part, observed and expected distributions can be built: ```{r,include=FALSE} x <- mixexample p <- AlleleFreq(x) h <-Heterozygous(x) H <- RxpHetero(h,p,HWE=FALSE) AS<-AlleleShare(x,replacement =FALSE) e <-RealProAlleleShare(AS) ``` `FreqHetero` and `DistHetero` build the observed and expected distribution for number of heterozygous loci (K). ```{r} ObsDist_K<-FreqHetero(h) ExpDist_K<- DistHetero(H) ``` `FreqAlleleShare` and `DistAlleleShare` build the observed and expected distribution for number of shared alleles (X). ```{r} ObsDist_X<-FreqAlleleShare(AS) ExpDist_X<-DistAlleleShare(e) ``` `ComposPare`s convert the above distributions into a format suitable for visualization. With the `trans=TRUE`, the observed frequencies and the expected density would be in separate columns. If `trans=FALSE`, two variables would be “OvE” (denoting the status of “observed or expected”) and “frequencies”. ```{r} df_K <- ComposPare_K(h,ExpDist_K,trans = F) df_X <- ComposPare_X(AS,ExpDist_X,trans = F) ``` ```{r echo=FALSE, fig.height=4, fig.show='hold', fig.width=7} ggplot(df_K,aes(x=freq))+ geom_histogram(aes(y=..density..,color=OvE,fill=OvE),alpha=0.5,binwidth = 1,position = "identity")+ ggtitle("No. of Heterozyous loci")+ xlab("No. of Heterozygous Loci(K)")+ylab("Density/Probability")+ stat_function(data=ExpDist_K,mapping = aes(x=K,y=Density),fun = splinefun(ExpDist_K$K,ExpDist_K$Density),color="Red") ggplot(df_X,aes(x=freq))+ geom_histogram(aes(y=..density..,color=OvE,fill=OvE),alpha=0.5,binwidth = 1,position = "identity")+ ggtitle("No. of Shared Alleles")+ xlab("No. of Shared Alleles(X)")+ylab("Density/Probability")+ stat_function(data=ExpDist_X,mapping = aes(x=X,y=Density),fun = splinefun(ExpDist_X$X,ExpDist_X$Density),color="Red") ```